

Document ID: 001-200501-035
Last Revision: February 14, 2003

NN$UMGR - N-NETWORKS EXTENSIBLE USER
MANAGEMENT FRAMEWORK

USER�S GUIDE AND REFERENCE

VERSION 1 .0.009

Copyright© 2002-2003 by N-Networks

All rights reserved.

N-Networks Extensible User Management Framework User’s Guide and Reference Version 1.0

Copyright 2002-2003 by N-Networks. All rights reserved. 1

COPYRIGHT INFORMATION AND ACKNOWLEDGEMENTS

NN$UMGR and this document are Copyright© 2002-2003 by N-Networks

Oracle is a registered trademark of Oracle Corporation.

PL/SQL, Oracle8i, and Oracle9i are trademarks of Oracle Corporation.

Other company or product names are mentioned for identification purposes only and may be service marks,
trademarks, or registered trademarks of their respective owners.

Although every effort was taken to make this document as accurate and complete as possible, no guarantees
whatsoever are given in regard to document�s accuracy and completeness. Also, no guarantees are given
that this document fully covers the functionality of the product it describes.

Information in this document is subject to change without notice.

N-Networks Extensible User Management Framework User’s Guide and Reference Version 1.0

Copyright 2002-2003 by N-Networks. All rights reserved. 2

INTRODUCTION
N-Networks Extensible User Management Framework, or NN$UMGR for short, is a set of Oracle database
objects and PL/SQL packages, which implement simple extensible framework for user management tasks in
PL/SQL applications. The framework provides APIs for managing users, groups, roles, permissions and access
control lists, and user sessions. The core set of programming interfaces is designed to suit basic
requirements for a generic user management system, and hooks are provided to extend the system as
needed (for example, to tie permissions managed by NN$UMGR to user-defined database structures, or to
extend user profiles by creating additional database objects to store extra data for users and link them
through foreign keys to the user data managed by NN$UMGR.)

This document describes the internal architecture of the framework, exposed database objects (tables and
views) and packaged APIs provided with the framework.

ARCHITECTURE.
NN$UMGR is installed into separate Oracle schema with minimum set of privileges. Several views and tables
are exposed to public, as well as API packages. NN$UMGR manages basic set of user management entities,
like users, groups and roles, internally and provides only read and reference access to the underlying tables
and views that store this information. All modifications to the data are performed through packaged APIs.
Additionally, NN$UMGR maintains separate virtual database for each Oracle user, which may be using the
framework. Each Oracle user sees and operates its own set of entities, including custom permissions, access
control lists, user sessions, etc. Basic entities are:

• User. This entity reflects a physical application user. Basic attributes for this entity are identifier, login
name, password, first, middle and last name, description and status. List of permissions granted to a
user can also be considered user�s attribute.

• Group. This entity reflects a group of Users and/or Groups. Attributes for this entity are identifier,
name, description, status and member list. List of permissions granted to a group can also be
considered group�s attribute.

• Role. This entity reflects a special case of Group, which can be disabled and enabled at any point in
time and can include only Users and Groups, but not other Roles. Attributes for this entity are
identifier, name, description, status and member list. Roles should generally be recipients of
permissions. Using roles, you can easily grant and revoke permissions to individual users and groups
of users by assigning them particular roles � when you disable a role, all permissions granted to it
appear to be revoked from role members, and when you re-enable it, all permissions are instantly
back.

• Permission. This entity reflects a user-defined permission (a security token, which identifies the right
to perform some action or access some entity). Attributes for this entity are identifier, name and
description. Developers can create any number of custom permissions and use them as they see fit
for their particular project needs.

• Access Control List. This entity reflects a set of Permissions associated with User, Group or Role
entity. Each member of the set contains permission identifier and grantee (user, group or role, to
which the permission is granted) identifier. ACLs may also be associated with custom entities, but
developers should maintain them separately (see Extending the Framework section for an example of
custom ACL and its use.)

• Session. This entity reflects User�s system access activity. When user logs on, Session entity is
automatically created for him and maintained for predetermined period of time or until User logs out.
Attributes for this entity are globally unique identifier, owner identifier and last access timestamp.

The above entities comprise complete basic user management system. Framework provides APIs for
manipulating Users, Groups, Roles, Permissions, Access Control Lists and Sessions. These APIs are described
in detail later in this document.

N-Networks Extensible User Management Framework User’s Guide and Reference Version 1.0

Copyright 2002-2003 by N-Networks. All rights reserved. 3

SOFTWARE REQUIREMENTS
This section lists necessary software to be installed prior to NN$UMGR installation. NN$UMGR requires the
following software versions to be present:

• Oracle8i Release 3 (Version 8.1.7) or later RDBMS with JServer (Java VM) option installed, Oracle9i
Release 2 (Version 9.2.0) recommended.

• Dynamic PSP Version 2.1 or later (or NN$PSP_UTL package alone.)

N-Networks Extensible User Management Framework User’s Guide and Reference Version 1.0

Copyright 2002-2003 by N-Networks. All rights reserved. 4

DATABASE OBJECTS EXPOSED BY THE FRAMEWORK.
NN$UMGR exposes several views and tables that can be used to query and reference objects managed by
the framework. NN$UMGR also actively uses one custom system context. This chapter describes these
database objects and ways to use them to extend the framework to suit your particular project needs.

CONTEXTS.
The framework uses system contexts for maintaining some information during Oracle session and making it
easily available through the use of SYS_CONTEXT() built-in function.

NN$UMGR_CTX CONTEXT.

One global system context - NN$UMGR_CTX - is created during framework installation. This context is
initialized and is written by NN$UMGR package, and can be read by any Oracle user using SYS_CONTEXT()
system function as follows:

SYS_CONTEXT(‘NN$UMGR_CTX’, ‘context variable name’)

This context receives several variables when a user session is created or reconnected. Variables are:

CURRENT_USER Contains identifier of currently logged in/connected user or NULL

CURRENT_SESSION Contains identifier of current session or NULL

Here �user� and �session� refers to entities managed by the framework. They are not the same and generally
have no relation to Oracle users and sessions.

TYPES.
NN$UMGR defines two SQL types which are used extensively throughout the framework. Note that since
synonyms for types are not supported in Oracle versions prior to 9.2, developers need to fully qualify them
by prefixing them with NN$UMGR schema name.

NN$TPERMLIST TYPE.

Definition:

TYPE NN$TPermList IS TABLE OF NUMBER(10,0);

This nested table type is used to provide an easy way to acquire and manipulate Access Control Lists. It is
associated with a list of permissions assigned to particular entity, either granted or required. The framework
maintains only lists of permissions granted to framework-managed entities (users, groups and roles). It is up
to developer to maintain lists of permissions required to access certain custom entities.

NN$TPERMNAMESLIST TYPE.

Definition:

TYPE NN$TPermNamesList IS TABLE OF VARCHAR2(50);

This nested table type is used to provide an easy way to acquire and manipulate Access Control Lists using
permission names rather than identifiers.

VIEWS AND TABLES.

NNVUSERS VIEW AND NNTUSERS TABLE.

Definition:

Column Name Column Type Column Description

ID NUMBER(10,0) identifier

N-Networks Extensible User Management Framework User’s Guide and Reference Version 1.0

Copyright 2002-2003 by N-Networks. All rights reserved. 5

Column Name Column Type Column Description

LOGIN VARCHAR2(50) login name

PASSWORD VARCHAR2(50) password hash (passwords are not stored in clear text)

FIRST_NAME VARCHAR2(100) First Name (not used for groups and roles)

MIDDLE_NAME VARCHAR2(100) Middle Name (not used for groups and roles)

LAST_NAME VARCHAR2(100) Last Name (not used for groups and roles)

UTYPE CHAR(1) Account type (‘U’ = User, ‘G’ = Group, ‘R’ = Role)

STATUS NUMBER(1) Status (1 = enabled, 0 = disabled, 2 = invalidated)

DESCRIPTION VARCHAR2(250) Verbose description of the account

CREATED DATE Date record created (default SYSDATE)

LAST_MODIFIED DATE Date record was last modified (default SYSDATE)

This view provides read access to all Users, Groups and Roles defined in context of current Oracle user. It is
built on top of NNTUSERS table with the same layout. PUBLIC is granted SELECT on this view and
REFERENCES on the underlying table�s primary key (ID). REFERENCES privilege allows creating related
structures in other schemas and maintaining referential integrity with NN$UMGR-controlled data.

Passwords are case-insensitive and are stored as cryptographically strong hashes, not as plain text, to
prevent peeking at other users� passwords. This means that if a user forgot his password, there is no way to
restore it because used hash function is one-way; it can only be changed to a new one.

NNVPERMISSIONS VIEW AND NNTPERMISSIONS TABLE.

Definition:

Column Name Column Type Column Description

ID NUMBER(10,0) Permission identifier

NAME VARCHAR2(50) Permission name

DESCRIPTION VARCHAR2(250) Verbose permission description

This view provides read access to all permissions defined by particular Oracle user. It is built on top of
NNTPERMISSIONS table with the same layout. PUBLIC is granted SELECT on this view and REFERENCES
on the underlying table�s primary key (ID). REFERENCES privilege allows using permissions defined in
context of the framework to create access control lists associated with user objects in addition to those
maintained internally for Users, Groups and Roles.

NNVGROUPS VIEW.

Definition:

Column Name Column Type Column Description

GRP_ID NUMBER(10,0) Group/role identifier

GRP_TYPE CHAR(1) Group type (‘G’ = Group, ‘R’ = Role)

GRP_NAME VARCHAR2(50) Group/Role name

MEMBER_ID NUMBER(10,0) Member identifier

MEMBER_TYPE CHAR(1) Member type (‘G’ = Group, ‘U’ = User, ‘R’ = Role)

MEMBER_NAME VARCHAR2(50) Member name (login)

N-Networks Extensible User Management Framework User’s Guide and Reference Version 1.0

Copyright 2002-2003 by N-Networks. All rights reserved. 6

This view provides read access to group/role membership information maintained by the framework. PUBLIC
is granted SELECT on this view. Disabled roles do not appear in this view.

NNVUMGR_SESSION VIEW AND NNTUMGR_SESSION TABLE.

Definition:

Column Name Column Type Column Description

ID VARCHAR2(40) Globally unique (GUID) session identifier

USER_ID NUMBER(10,0) User identifier

LAST_ACCESS DATE Last access timestamp

This view provides read access to the user session information maintained by the framework. It is built on
top of NNTUMGR_SESSION table with the same layout. PUBLIC is granted SELECT on this view and
REFERENCES on the underlying table�s primary key (ID, USER_ID). REFERENCES privilege allows creating
related structures to hold additional information associated with NN$UMGR sessions in other Oracle schemas
and maintaining referential integrity between framework-maintained session data and user-maintained
session data.

NNVMYPERMISSIONS VIEW.

Definition:

Column Name Column Type Column Description

ID NUMBER(10,0) Permission identifier

NAME VARCHAR2(50) Permission name

This view provides relational view of currently logged in user�s permissions. PUBLIC is granted SELECT on
this view.

NNVUSER_PERMISSIONS VIEW.

Definition:

Column Name Column Type Column Description

USER_ID NUMBER(10,0) User identifier

PERM_ID NUMBER(10,0) Permission identifier

PERM_NAME VARCHAR2(50) Permission name

This view provides relational view of users/groups/roles and their permissions. Users/groups/roles with no
permissions do not appear in this view. PUBLIC is granted SELECT on this view.

NNVUSER_PERMISSIONS_O VIEW.

Definition:

Column Name Column Type Column Description

USER_ID NUMBER(10,0) User identifier

PERMISSIONS NN$TPermList Permissions list (nested table)

This view provides object-relational view of all users/groups/roles and their permissions. All
users/groups/roles appear in this view. Those with no assigned permissions will appear with empty
PERMISSIONS nested table. PUBLIC is granted SELECT on this view.

N-Networks Extensible User Management Framework User’s Guide and Reference Version 1.0

Copyright 2002-2003 by N-Networks. All rights reserved. 7

NNVVALIDATIONS VIEW.

Definition:

Column Name Column Type Column Description

USER_ID NUMBER(10,0) User identifier

VAL_CODE_HASH VARCHAR2(40) Validation code hash

VAL_STARTED DATE Timestamp when validation process initiated (default SYSDATE)

VAL_RECEIVED DATE Timestamp when validation was completed (default NULL, non-NULL
value means this validation was completed successfully)

This view tracks user validations. Validation is a process of confirming user account. It may be used for newly
created accounts to verify certain account attributes, or periodically to confirm that user is still active. The
validation process is started by inserting a new row into the internal validations table and sending special
random validation code to the user whose account is validated. Once the user replies with proper validation
code, VAL_RECEIVED column receives timestamp of successful code verification and the user account is re-
enabled. PUBLIC is granted SELECT on this view. No relations may be established with underlying table as
validation process is fully performed internally.

Note that the framework provides no way for communicating validation code to the user, it is up to
developers to decide how to pass the code to the user and how to receive user�s reply. For example,
application may send the user an email with an URL pointing to the validation procedure and include
validation code in that URL, and validation procedure will receive the code and complete validation when the
user opens the URL. This approach may help to ensure that user�s email address is correct.

N-Networks Extensible User Management Framework User’s Guide and Reference Version 1.0

Copyright 2002-2003 by N-Networks. All rights reserved. 8

APPLICATION PROGRAMMING INTERFACES (APIS).
This section describes APIs exposed by the framework and gives examples of their use. The framework
exposes three packages, namely NN$UMGR_PERM, NN$UMGR_ACL and NN$UMGR, which comprise APIs to
manipulate various objects maintained by the framework.

NN$UMGR_PERM PACKAGE.

This package deals with permission definitions. The package provides means to create new permissions, drop
existing permissions, and map permission names to identifiers and vice-versa. Permission names are case-
insensitive and should be unique for each Oracle user (different users may have permissions with the same
names, but their meaning may be different in each case.)

SUMMARY OF SUBPROGRAMS.

FUNCTION createPerm(
 sName VARCHAR2
 ,sDescription VARCHAR2
) RETURN NUMBER;

This function defines new permission with name sName and description sDescription. It returns new
permission identifier if successful, and NULL otherwise.

FUNCTION dropPerm(
 sName VARCHAR2
) RETURN NUMBER;

This function removes permission named sName and returns 1 if successful or �1 if failed.

FUNCTION dropPerm(
 nID NUMBER
) RETURN NUMBER;

This function removes permission identified by nID and returns 1 if successful or �1 if failed.

FUNCTION getPermID(
 sName VARCHAR2
) RETURN NUMBER;

This function returns identifier for permission named sName, or NULL if such permission does not exist.

FUNCTION getPermName(
 nID NUMBER
) RETURN VARCHAR2;

This function returns name for permission identified by nID, or NULL if such permission does not exist.

FUNCTION mapPermNames(
 PermNames NN$TPermNamesList
) RETURN NN$TPermList;

N-Networks Extensible User Management Framework User’s Guide and Reference Version 1.0

Copyright 2002-2003 by N-Networks. All rights reserved. 9

This function takes an array of permission names as input and returns an array of permission identifiers for
all found permissions. If no permissions in PermNames array could be resolved to identifiers, function will
return empty NN$TPermList array, it will never return NULL.

FUNCTION editPerm(
 sName VARCHAR2
 ,sDescription VARCHAR2
) RETURN NUMBER;

This function updates description of sName permission to sDescription. Returns 1 if successful, -1 if
failed.

FUNCTION editPerm(
 nID NUMBER
 ,sDescription VARCHAR2
) RETURN NUMBER;

This function updates description of nID permission to sDescription. Returns 1 if successful, -1 if failed.

FUNCTION getVersion RETURN VARCHAR2;

This function returns current package version as VARCHAR2 string.

EXAMPLES.

Below are some examples of package calls.

declare
 nResult NUMBER;
 bResult Boolean;
 sResult VARCHAR2(100);
 aPerms NN$TPermList;
begin
 -- create new permission
 nResult := NN$UMGR_PERM.createPerm(‘SamplePermission’, ‘Sample Permission’);
 -- get permission name (should be uppercase SAMPLEPERMISSION)
 sResult := NN$UMGR_PERM.getPermName(nResult);
 -- example of permission names mapping
 aPerms := NN$UMGR_PERM.mapPermNames(NN$TPermNamesList(‘samplepermission’));
end;

SECURITY CONSIDERATIONS.

This package does not control who creates, modifies or drops permissions by default. Each Oracle user who
wants to turn on internal security checks must perform special security bootstrap procedure. When this
procedure is performed, several predefined permissions and roles are created, and only those users that
have these special permissions are allowed to manipulate permissions. Note that such privileged users may
drop these special permissions effectively disabling internal security.

N-Networks Extensible User Management Framework User’s Guide and Reference Version 1.0

Copyright 2002-2003 by N-Networks. All rights reserved. 10

NN$UMGR_ACL PACKAGE.

This package provides API for manipulating Access Control Lists and permission lists: granting and revoking
permissions to Users, Groups and Roles, and checking if effective permissions are adequate to requested
ACL. Key difference between ACL and User permissions lists are that user permissions list specifies
permissions the user has, while ACL specifies permissions the user should have to access the resource. It is
up to developer to implement ACL storage and specification for custom entities. Examples in this section will
show generic approach to implementing an ACL and using provided API to verify if a user has adequate
privileges to access an object controlled by such ACL.

SUMMARY OF SUBPROGRAMS.

FUNCTION checkPerms(
 Effective NN$TPermList,
 Required NN$TPermList,
 Override NN$TPermList DEFAULT NULL
) RETURN Boolean;

FUNCTION checkPermsN(
 Effective NN$TPermList,
 Required NN$TPermList,
 Override NN$TPermList DEFAULT NULL
) RETURN INT;

FUNCTION checkPerms(
 Effective NN$TPermList,
 Required NN$TPermNamesList,
 Override NN$TPermNamesList DEFAULT NULL
) RETURN Boolean;

FUNCTION checkPermsN(
 Effective NN$TPermList,
 Required NN$TPermNamesList,
 Override NN$TPermNamesList DEFAULT NULL
) RETURN INT;

These functions are the centerpiece of the package. They provide a common way to verify if user�s
permissions are adequate for requested object�s ACL or, optionally, to some list of permissions that override
the ACL assigned to particular object. Functions operate with ACLs for objects rather than objects
themselves. It is up to developer to maintain these ACLs and retrieve them in a fashion that allows using
checkPerms function to verify them.

Functions accept three arrays as parameters: Effective, which is a list of user�s effective permissions
(those he has, including permissions he inherited from Group/Role membership), Required, which is an ACL
for some object, and, optionally, Override, which is a list of permissions that override object�s ACL and
allow user to bypass the ACL if he has these permissions.

Functions come in two overloaded versions, one accepting arrays of permission identifiers, and one accepting
arrays of permission names for Required and Override lists (note that Effective list should always be
an array of permission identifiers). Version with names lists allows for easy passing of fixed lists of
permissions without the need to call mapPerms to map them to identifiers. checkPermsN functions return
INT instead of Boolean, which allows to use them in SQL.

Functions take the most restrictive approach: everything that is not explicitly granted is denied. Function
returns TRUE only if either Required or Override is neither NULL nor empty, and Effective
permissions contain either all of Required permissions, or all of Override permissions, otherwise it returns
FALSE. Function also returns FALSE if Effective list is empty or NULL. The following table illustrates the

N-Networks Extensible User Management Framework User’s Guide and Reference Version 1.0

Copyright 2002-2003 by N-Networks. All rights reserved. 11

function outcome for various combinations of arguments (MINUS means set minus operation, which, when
applied to two sets A and B as A MINUS B, removes all elements from set A that are also in set B):

Effective Required Override Result

NULL or empty Any Any FALSE or 0

Has some elements NULL or empty NULL or empty FALSE or 0

Has some elements Has some elements NULL or empty TRUE or 1 if Required MINUS
Effective is empty

Has some elements NULL or empty Has some elements TRUE or 1 if Override MINUS
Effective is empty

Has some elements Has some elements Has some elements TRUE or 1 if (Required MINUS
Effective is empty) or (Override
MINUS Effective is empty)

This means, that to allow access to an object, one should assign some permissions to this object�s ACL and
then those users that have all these permissions or all Override permissions (if any) will be able to access
the object. For example, to grant only certain group or role members access to an object, you can assign the
group or role as object�s owner and verify that requesting user has the same permissions as the owner of the
object. Unauthenticated users (or those that don�t have any permissions) are not allowed to access anything
(you may override this behavior by adding your own rules to permission checks, like allow object owners to
access their own objects without the need for any specific permissions assigned to them).

FUNCTION grantPerms(
 nID NUMBER,
 Perms NN$TPermList
) RETURN NUMBER;

FUNCTION grantPerms(
 nID NUMBER,
 Perms NN$TPermNamesList
) RETURN NUMBER;

This function grants specified Perms permissions to a User, Group or Role identified by nID identifier. It
comes in two overloaded versions, one accepting array of permission identifiers, and another accepting array
of permission names for Perms parameter. Function returns 0 if no permissions were granted, and > 0 if
some or all permissions were granted (function does not re-grant permissions that were already granted with
previous calls to this function). Function may also raise NN$UMGR.ACCESS_VIOLATION exception if internal
security is active and calling user does not have adequate privileges to grant permissions to other users,
including self.

FUNCTION revokePerms(
 nID NUMBER,
 Perms NN$TPermList
) RETURN NUMBER;

FUNCTION revokePerms(
 nID NUMBER,
 Perms NN$TPermNamesList
) RETURN NUMBER;

This function is the opposite of grantPerms and revokes specified permissions from User, Role or Group
identified by nID. Function returns 0 if no permissions were revoked, > 0 if some or all permissions were
revoked, and may raise NN$UMGR.ACCESS_VIOLATION exception if internal security is active and calling
user does not have adequate privileges to revoke permissions from other users. Note that user cannot revoke

N-Networks Extensible User Management Framework User’s Guide and Reference Version 1.0

Copyright 2002-2003 by N-Networks. All rights reserved. 12

system permissions from himself even if he has adequate privileges to revoke them in general � system
privileges will be silently ignored in revoke request from self.

FUNCTION getPerms(nID NUMBER
) RETURN NN$TPermList;

This function retrieves and returns as nested table list of effective permissions for User, Group or Role
identified by nID. This list includes permissions inherited from other Groups and Roles the requested entity is
member of. Resulting list contains all distinct permissions the entity has at the time of the call (this list may
change, for example, if a Role assigned to the entity is disabled in a concurrent transaction). If no
permissions were found, function will return an empty array.

FUNCTION getVersion RETURN VARCHAR2;

This function returns current package version as VARCHAR2 string.

EXAMPLES.

Below are some examples of package use.

declare
 nResult NUMBER;
begin
 -- grant some permissions to a user
 nResult := NN$UMGR_ACL.grantPerms(NN$UMGR.getUserID(‘User’),
 NN$TPermNamesList(‘Perm1’, ‘Perm2’));
 -- verify user’s effective permissions against required ACL
 if NN$UMGR_ACL.checkPerms(
 NN$UMGR_ACL.getPerms(NN$UMGR.getUserID(‘User1’)),
 NN$TPermNamesList(‘Perm1’, ‘Perm2’)
) then
 dbms_output.put_line(‘User has needed permissions.’);
 else
 dbms_output.put_line(‘User DOES NOT have needed permissions.’);
 end if;
 -- now verify current user’s permissions using shortcut function
 -- myPermissions in NN$UMGR package
 if NN$UMGR_ACL.checkPerms(
 NN$UMGR.myPermissions,
 NN$TPermNamesList(‘Perm1’, ‘Perm2’)
) then
 dbms_output.put_line(‘Current user has needed permissions.’);
 else
 dbms_output.put_line(‘Current user DOES NOT have needed permissions.’);
 end if;
end;

SECURITY CONSIDERATIONS.

This package does not control who grants and revokes permissions by default. Each Oracle user who wants
to turn on internal security checks must perform special security bootstrap procedure. When this procedure is
performed, several predefined permissions and roles are created, and only those users that have these
special permissions are allowed to grant and revoke permissions to and from other users.

N-Networks Extensible User Management Framework User’s Guide and Reference Version 1.0

Copyright 2002-2003 by N-Networks. All rights reserved. 13

NN$UMGR PACKAGE.

This package is the main framework package. It provides functions and procedures for manipulating users,
groups, roles and sessions.

VARIABLES.

G_TIMEOUT NUMBER := 1;

This variable defines session timeout in days. Default session timeout is 1 day. Developers may reinitialize
this variable to another value before calling session-specific subprograms in the package to modify default
timeout to a shorter or longer period of time.

G_VAL_GRACE_PERIOD NUMBER := 3;

This variable defines grace period in days for users in validation process while they still can login into system
(to revalidate themselves for example). If a user is in validation process and validation was not performed
within this period, the user will not be able to login until a user with administrative privileges will forcibly
revalidate him. Default grace period is 3 days.

CONSTANTS.

G_US_DISABLED CONSTANT NUMBER := 0; -- disabled
G_US_ACTIVE CONSTANT NUMBER := 1; -- active
G_US_INVALID CONSTANT NUMBER := 2; -- invalidated, pending validation

These constants define standard values for STATUS column of NNTUSERS table.

EXCEPTIONS.

ACCESS_VIOLATION

This is generic Access Violation exception, which is raised if internal security is active and user attempts to
perform an operation for which he has insufficient privileges. Internal security is inactive by default and is
initialized by special security bootstrap procedure, which should be performed by each Oracle user using the
framework separately. The bootstrap procedure creates some predefined permissions and groups, which are
then used by the framework to perform internal security checks.

SUMMARY OF SUBPROGRAMS.

FUNCTION loginUser(p_login VARCHAR2
 ,p_password VARCHAR2
 ,b_reconnect Boolean DEFAULT FALSE
) RETURN VARCHAR2;

This function attempts to login given user and returns session ID if successful, or NULL otherwise. If
b_reconnect is TRUE, the function also attempts to reconnect to an existing session associated with the
user if one exists and is not timed out (equivalent to initSession() call). In addition, NN$UMGR_CTX
context receives two values:

CURRENT_USER = logged in user ID

CURRENT_SESSION = current session ID (same as function return)

for future reference within Oracle session if login operation is successful.

FUNCTION initSession(p_session_id VARCHAR2
 ,bSecure Boolean DEFAULT FALSE

N-Networks Extensible User Management Framework User’s Guide and Reference Version 1.0

Copyright 2002-2003 by N-Networks. All rights reserved. 14

 ,p_password VARCHAR2 DEFAULT NULL
) RETURN Boolean;

This function attempts to re-establish the user session identified by given session ID. Returns TRUE if
successful, FALSE if the session does not exist or is timed out. In addition, NN$UMGR_CTX context receives
two values:

CURRENT_USER = logged in user ID

CURRENT_SESSION = current session ID (same as function return)

for future reference within Oracle session if operation is successful. Since session information is freely
available through NNVUMGR_SESSION view and includes session user ID, this function may be used to
impersonate a privileged user without having to authenticate. To prevent this, two optional parameters may
be specified: bSecure, which turns on authentication on session reconnect, and p_password, which is
checked against session user�s password if bSecure is TRUE.

PROCEDURE logMeOff;

Logs off currently logged on user. NN$UMGR_CTX context is cleared and user�s session is terminated
(removed from the list of sessions). This procedure call is equivalent to logoutSession(
SYS_CONTEXT(‘NN$UMGR_CTX’, ‘CURRENT_SESSION’)) call.

FUNCTION logoutSession(p_session_id VARCHAR2
) RETURN Boolean;

Terminates designated session. If p_session_id happens to be current session, then this function call is
equivalent to logMeOff procedure. Returns TRUE if session was terminated, FALSE otherwise.

FUNCTION myPermissions RETURN NN$TPermList;

This function returns a nested table filled with effective permissions of currently logged in user or empty
table if no user session is currently established. Effective permissions are a combination of permissions
granted directly to user and those inherited through user�s group and/or role membership. This function is
equivalent to NN$UMGR_ACL.getPerms(SYS_CONTEXT(‘NN$UMGR_CTX’, ‘CURRENT_USER’)) call.

FUNCTION changePassword(nID NUMBER
 ,p_password VARCHAR2
) RETURN Boolean;

This function attempts to assign new password to the user, returns TRUE if successful, FALSE otherwise (no
such user). In addition, this function may raise ACCESS_VIOLATION exception if internal security is active
and calling user is not attempting to change his own password and does not have privileges to manage other
users.

FUNCTION createUser(p_login VARCHAR2
 ,p_password VARCHAR2
 ,p_fname VARCHAR2 DEFAULT NULL
 ,p_mname VARCHAR2 DEFAULT NULL
 ,p_lname VARCHAR2 DEFAULT NULL
 ,p_description VARCHAR2 DEFAULT 'User Account'
) RETURN NUMBER;

This function creates new user account and returns newly created account ID or NULL if failed. p_login is
unique user login name, p_password is user�s password (case-insensitive), p_fname is user�s first name,

N-Networks Extensible User Management Framework User’s Guide and Reference Version 1.0

Copyright 2002-2003 by N-Networks. All rights reserved. 15

p_mname is user�s middle name, p_lname is user�s last name and p_description is verbose user account
description. The function may raise ACCESS_VIOLATION exception if internal security is active and calling
user does not have adequate privileges.

FUNCTION editUser(n_userID NUMBER
 ,p_fname VARCHAR2 DEFAULT NULL
 ,p_mname VARCHAR2 DEFAULT NULL
 ,p_lname VARCHAR2 DEFAULT NULL
 ,p_description VARCHAR2 DEFAULT NULL
) RETURN BOOLEAN;

This function attempts to update user information for given user ID and returns TRUE if successful, FALSE
otherwise. In addition, the function may raise ACCESS_VIOLATION exception if internal security is active
and calling user is not modifying his own account and does not have adequate privileges to manage other
users.

FUNCTION setUserStatus(n_UserID NNTUSERS.ID%TYPE
 ,n_Status NNTUSERS.STATUS%TYPE
) RETURN BOOLEAN;

This function changes user status. n_UserID is user identifier and n_Status should be one of G_US
constants. If internal access control is active, only administrators may change user status.

FUNCTION createGroup(p_groupname VARCHAR2
 ,p_description VARCHAR2 DEFAULT 'Group'
) RETURN NUMBER;

This function attempts to create a new group and returns newly created group ID if successful, or NULL if
failed. The function may raise ACCESS_VIOLATION exception if internal security is active and calling user
does not have adequate privileges for managing users and groups. p_groupname is unique group name,
p_description is verbose group description.

FUNCTION editGroup(n_GroupID NUMBER
 ,p_description VARCHAR2 DEFAULT NULL
) RETURN BOOLEAN;

This function attempts to modify description for the given group, and returns TRUE if successful, or FALSE
otherwise. The function may raise ACCESS_VIOLATION exception if internal security is active and calling
user does not have adequate privileges for managing users and groups. n_GroupID is group identifier and
p_description is new description.

FUNCTION createRole(p_rolename VARCHAR2
 ,p_description VARCHAR2 DEFAULT 'Role'
) RETURN NUMBER;

This function creates a new role and returns newly create role ID, or NULL if failed. The function may raise
ACCESS_VIOLATION exception if internal security is active and calling user does not have adequate
privileges. p_rolename is new unique role name, and p_description is verbose role description.

FUNCTION editRole(n_RoleID NUMBER
 ,p_description VARCHAR2 DEFAULT NULL
) RETURN BOOLEAN;

N-Networks Extensible User Management Framework User’s Guide and Reference Version 1.0

Copyright 2002-2003 by N-Networks. All rights reserved. 16

This function attempts to change the role description and returns TRUE if successful, FALSE otherwise. The
function may raise ACCESS_VIOLATION exception if internal security is active and calling user does not
have adequate privileges. n_RoleID is role identifier and p_description is new description

FUNCTION getGroupID(p_groupname VARCHAR2) RETURN NUMBER;

This function returns group identifier for the given group name.

FUNCTION getRoleID(p_rolename VARCHAR2) RETURN NUMBER;

This function returns role identifier for the given role name.

FUNCTION getUserID(p_login VARCHAR2) RETURN NUMBER;

This function returns user ID for the given user name (login).

FUNCTION getUserRecord(n_UserID NUMBER) RETURN NNVUSERS%ROWTYPE;

This function attempts to return user, group or role record for given user/group/role identifier, for example,
urec := getUserRecord(TO_NUMBER(SYS_CONTEXT('NN$UMGR','CURRENT_USER))). The function
returns NULL if user record with specified identifier was not found. Throws standard exceptions if something
goes wrong, except NO_DATA_FOUND, which is handled internally. This function is provided as a shortcut to
selecting the user/group/role record from NNVUSERS view.

FUNCTION addGroupMember(n_user_id NUMBER
 ,n_group_id NUMBER
) RETURN Boolean;

This function attempts to add a user or a group n_user_id to the group n_group_id and returns TRUE if
successful, or FALSE if not. The function may raise ACCESS_VIOLATION exception if internal security is
active and calling user does not have adequate privileges.

FUNCTION addRoleMember(n_user_id NUMBER
 ,n_role_id NUMBER
) RETURN Boolean;

This function attempts to add a user or a group n_user_id to the role n_role_id and returns TRUE if
successful, or FALSE if not. The function may raise ACCESS_VIOLATION exception if internal security is
active and calling user does not have adequate privileges.

FUNCTION dropGroupMember(n_user_id NUMBER
 ,n_group_id NUMBER
) RETURN Boolean;

This function attempts to remove a user or a group n_user_id from the group n_group_id and returns
TRUE if successful, or FALSE if not. The function may raise ACCESS_VIOLATION exception if internal
security is active and calling user does not have adequate privileges.

FUNCTION dropRoleMember(n_user_id NUMBER
 ,n_role_id NUMBER
) RETURN Boolean;

N-Networks Extensible User Management Framework User’s Guide and Reference Version 1.0

Copyright 2002-2003 by N-Networks. All rights reserved. 17

This function attempts to remove a user or a group n_user_id from the role n_role_id and returns TRUE
if successful, or FALSE if not. The function may raise ACCESS_VIOLATION exception if internal security is
active and calling user does not have adequate privileges.

FUNCTION dropUser(n_UserID NUMBER
) RETURN Boolean;

This function attempts to drop specified user, returns TRUE if successful, FALSE otherwise. The function may
raise ACCESS_VIOLATION exception if internal security is active and calling user does not have adequate
privileges or when calling user attempts to drop himself.

FUNCTION disableRole(n_RoleID NUMBER
) RETURN BOOLEAN;

This function attempts to disable specified role, returns TRUE if successful, FALSE otherwise. The function
may raise ACCESS_VIOLATION exception if internal security is active and calling user does not have
adequate privileges.

FUNCTION enableRole(n_RoleID NUMBER
) RETURN BOOLEAN;

This function attempts to enable given role, returns TRUE if successful, FALSE otherwise. The function may
raise ACCESS_VIOLATION exception if internal security is active and calling user does not have adequate
privileges.

FUNCTION getValidationCode(n_UserID NNTUSERS.ID%TYPE
 ,b_Invalidate BOOLEAN DEFAULT TRUE
) RETURN VARCHAR2;

This function initiates validation process for the user identified by n_UserID. b_Invalidate flag signals if
user account status should be automatically set to G_US_INVALID. If internal access control is active, only
administrators may start the validation process. The function returns random validation code the user should
reply with to be re-validated. This code, when supplied to validateUser() function, will reactivate the
user account. Validation codes are case-sensitive and should be presented to validateUser() as is with
no case conversions. Validations initiated with this function call are tracked in NNVVALIDATIONS view.
Only one incomplete validation can be active at one time. Function will return NULL if specified user does not
exist, or current validation code for the user if the user is already in the validation process. The function may
also throw ACCESS_VIOLATION exception if calling user does not have sufficient privileges to start the
validation.

FUNCTION validateUser(n_UserID NNTUSERS.ID%TYPE
 ,s_valCode VARCHAR2
 ,b_ForceValidation BOOLEAN DEFAULT FALSE
) RETURN BOOLEAN;

This function re-validates the user identified by n_UserID if s_valCode is correct. The user must be in
grace period or b_ForceValidation should be TRUE for validation to take place. If the user is in grace
period and the validation code is correct, user account is automatically enabled. If b_ForceValidation is
specified, s_valCode is not checked, but calling user must have administrative privileges, otherwise
ACCESS_VIOLATION exception will be thrown. Forced validation may be used by administrators to manually
revalidate users who were unable to complete validation in time while administrator is certain that the user is
still active.

N-Networks Extensible User Management Framework User’s Guide and Reference Version 1.0

Copyright 2002-2003 by N-Networks. All rights reserved. 18

FUNCTION inGracePeriod(n_UserID NNTUSERS.ID%TYPE
) RETURN NUMBER;

This function returns 1 if user is invalidated and is in grace period, 0 otherwise. This function can be used in
SQL.

FUNCTION getVersion RETURN VARCHAR2;

This function returns current package version as VARCHAR2 string.

N-Networks Extensible User Management Framework User’s Guide and Reference Version 1.0

Copyright 2002-2003 by N-Networks. All rights reserved. 19

EXAMPLES.

The following example is an SQL*Plus script that can be used for testing NN$UMGR framework installation
and functionality. It demonstrates all basic functions of the framework and their use.

set serveroutput on
set timing on

-- define NN$UMGR types schema – synonyms for types are not supported
-- in Oracle, thus we need to reference types with full qualification. Packages,
-- on the other hand, have public synonyms.
define typesch='nnumgr.'

set echo off

declare
 bdummy Boolean;
 ndummy number;
 sdummy varchar2(40);
 perms &typesch.NN$TPermList;
begin
 dbms_output.enable(1000000);
 -- create two sample permissions
 ndummy := nn$umgr_perm.createPerm('sysadmin','Administer System');
 ndummy := nn$umgr_perm.createPerm('useradmin','Administer Users');
 -- create admin user
 ndummy := nn$umgr.createUser(
 'admin',
 'password',
 'System',
 '',
 'Administrator',
 'System Administrator Account');
 if ndummy is not null then
 dbms_output.put_line('User account #'||ndummy||' created');
 end if;
 -- create Administrators group
 ndummy := nn$umgr.createGroup('Administrators','System Administrators');
 if ndummy is not null then
 dbms_output.put_line('Group #'||ndummy||' created');
 end if;
 -- create UserAdmins group
 ndummy := nn$umgr.createGroup('UserAdmins','User Administrators');
 if ndummy is not null then
 dbms_output.put_line('Group #'||ndummy||' created');
 end if;
 -- grant some permissions to administrators group
 ndummy := nn$umgr_acl.grantPerms(nn$umgr.getGroupID('administrators'),

&typesch.NN$TPermNamesList('sysadmin','useradmin'));
 -- add admin to administrators group
 bdummy := nn$umgr.addGroupMember(nn$umgr.getUserID('admin'),
 nn$umgr.getGroupID('administrators'));
 if bdummy then
 dbms_output.put_line('addGroupMember succeeded.');
 end if;
 -- attempt to login as admin
 sdummy := nn$umgr.loginUser('admin','password');

N-Networks Extensible User Management Framework User’s Guide and Reference Version 1.0

Copyright 2002-2003 by N-Networks. All rights reserved. 20

 if sdummy is not null then
 dbms_output.put_line('User logged in, session id = '||sdummy||', effective
permissions:');
 -- print effective user permissions (note that we did not grant any
 -- permissions directly to admin user, only to administrators group
 perms := nn$umgr.myPermissions;
 if perms is not null and perms.count > 0 then
 for i in perms.First..perms.Last loop
 dbms_output.put_line(nn$umgr_perm.getPermName(perms(i)));
 end loop;
 else
 dbms_output.put_line('None.');
 end if;
 end if;
 -- verify effective permissions of current user against fixed set of
 -- permissions
 if nn$umgr_acl.checkPerms(nn$umgr.myPermissions,
 &typesch.NN$TPermNamesList('useradmin'),
 &typesch.NN$TPermNamesList('sysadmin')
) then
 dbms_output.put_line('Current user can administer other users.');
 else
 dbms_output.put_line('Current user CAN NOT administer other users.');
 end if;
 -- log off
 nn$umgr.logMeOff;
 dbms_output.put_line('Effective permissions after logout:');
 -- check permissions after logout
 perms := nn$umgr.myPermissions;
 if perms is not null and perms.count > 0 then
 for i in perms.First..perms.Last loop
 dbms_output.put_line(nn$umgr_perm.getPermName(perms(i)));
 end loop;
 else
 dbms_output.put_line('None.');
 end if;
 if nn$umgr_acl.checkPerms(nn$umgr.myPermissions,
 &typesch.NN$TPermNamesList('useradmin'),
 &typesch.NN$TPermNamesList('sysadmin')
) then
 dbms_output.put_line('Current user can administer other users.');
 else
 dbms_output.put_line('Current user CAN NOT administer other users.');
 end if;
end;
/

The above example should produce the output similar to the following:

User account #31805710 created
Group #180344 created
Group #330135 created
addGroupMember succeeded.
User logged in, session id = 0B74B194AA504D53853DD3A99336C7EE, effective
permissions:
SYSADMIN
USERADMIN
Current user can administer other users.
Effective permissions after logout:
None.

N-Networks Extensible User Management Framework User’s Guide and Reference Version 1.0

Copyright 2002-2003 by N-Networks. All rights reserved. 21

Current user CAN NOT administer other users.

PL/SQL procedure successfully completed.

Elapsed: 00:00:00.30

SECURITY CONSIDERATIONS.

This package does not control who creates, modifies and drops users, groups and roles by default. Each
Oracle user who wants to turn on internal security checks must perform special security bootstrap procedure.
When this procedure is performed, several predefined permissions and roles are created, and only those
users that have these special permissions are allowed to manage other users, groups and roles.

N-Networks Extensible User Management Framework User’s Guide and Reference Version 1.0

Copyright 2002-2003 by N-Networks. All rights reserved. 22

EXTENDING THE FRAMEWORK.
This section will provide examples of extending the basic user management capabilities provided by the
framework to support additional entity attributes, and using ACL API to control access to custom entities.

ADDING ATTRIBUTES TO NN$UMGR ENTITIES.
Entities managed by the framework (users, groups, roles and sessions) have only a limited basic set of
attributes for each entity type. Developers may want to support additional attributes for these entities (for
example, E-mail Address, Date of Birth, Sex and Marital Status attributes for user). The framework provides
referential access to entity storage that provides means for linking additional attributes to framework-
managed entities. The following example demonstrates adding E-mail Address, Date of Birth, Sex and Marital
Status attributes to User entity.
CREATE TABLE USER_ATTRIBUTES(
 USER_ID NUMBER(10,0) NOT NULL
,EMAIL VARCHAR2(100)
,DOB DATE
,SEX CHAR(1) CHECK (SEX IN (‘M’,’F’))
,MARITAL VARCHAR2(8) CHECK (MARITAL IN (‘SINGLE’, ‘MARRIED’, ‘DIVORCED’))
,CONSTRAINT UAPKUSER_ID PRIMARY KEY (USER_ID)
,CONSTRAINT UAFKNNTUSERS_ID FOREIGN KEY (USER_ID)
 REFERENCES NNTUSERS (ID) ON DELETE CASCADE
)
/

The table definition above creates master-detail relationship between this table and NNTUSERS table, for
which public is granted REFERENCES privilege (that is, anyone is allowed to create foreign keys on this table
and maintain relationship with it). Now, you can create new user and populate additional attributes this way:
DECLARE
 usr_id NUMBER;
BEGIN
 usr_id := NN$UMGR.createUser(‘jdoe’,
 ‘password’,
 ‘John’,
 ‘’,
 ‘Doe’,
 ‘John Doe account’);
 IF usr_id IS NOT NULL THEN
 INSERT INTO USER_ATTRIBUTES
 VALUES(usr_id,
 ‘jdoe@mycompany.com’,
 to_date(’14 Jun 1970’, ‘DD Mon YYYY’),
 ‘M’,
 ‘MARRIED’);
 COMMIT;
 END IF;
END;

If you subsequently drop the jdoe account using dropUser call, corresponding data in USER_ATTRIBUTES
will be automatically deleted through ON DELETE CASCADE foreign key constraint on this table.

Using similar techniques you can extend NN$UMGR user sessions by creating foreign keys on
NNTUMGR_SESSION(ID, USER_ID), and link your own ACLs to framework-managed permissions by
creating foreign keys on NNTPERMISSIONS(ID).

N-Networks Extensible User Management Framework User’s Guide and Reference Version 1.0

Copyright 2002-2003 by N-Networks. All rights reserved. 23

MAINTAINING AND CHECKING YOUR OWN ACCESS CONTROL LISTS.
ACLs managed by NN$UMGR_ACL package are only related to NN$UMGR entities and represent permissions
granted to users, groups and roles. However, you can easily attach your own framework-compatible ACLs to
your objects and use NN$UMGR_ACL.checkPerms() function to validate user privileges against these ACLs.
This section provides an example of such custom ACL and ways to validate user privileges against it.

First, we create a table, which will hold objects (documents) we want to control access to:
CREATE TABLE DOCS (DOC_ID NUMBER(10,0) NOT NULL
 ,DOC_NAME VARCHAR2(200)
 ,DOC_BODY CLOB
 ,DOC_OWNER NUMBER(10,0) NOT NULL
 ,CONSTRAINT DOCS$PK PRIMARY KEY (DOC_ID)
 ,CONSTRAINT DOCSFKNNTUSERS FOREIGN KEY (DOC_OWNER)
 REFERENCES NNTUSERS ON DELETE SET NULL
)
/

We defined relationship with NNTUSERS table to know who�s the document owner, and set referential
integrity constraint to ON DELETE SET NULL, which means that if the row owner is dropped, the document
will be left intact, but its owner information will be nullified (the document will be left stranded in the
database, but it will not be removed). Next, we create an ACL table that will hold ACLs for our documents:
CREATE TABLE DOCS_ACL(DOC_ID NUMBER(10,0) NOT NULL
 ,PERM_ID NUMBER(10,0) NOT NULL
 ,CONSTRAINT DOCS_ACL$PK PRIMARY KEY (DOC_ID, PERM_ID)
 ,CONSTRAINT DOCS_ACLFKDOCS FOREIGN KEY (DOC_ID)
 REFERENCES DOCS(DOC_ID) ON DELETE CASCADE
 ,CONSTRAINT DOCS_ACLFKPERMS FOREIGN KEY (PERM_ID)
 REFERENCES NNTPERMISSIONS(ID) ON DELETE CASCADE
)
/

Here we defined relationships with DOCS table and NNTPERMISSIONS table, and entries in DOCS_ACL will
be automatically deleted if parent document is deleted, or permission is dropped. Now it�s time to create
some utility subprograms that will help us add permissions to the ACL, remove them, and receive them into a
NN$TPermList array to pass it to NN$UMGR.checkPerms() function for verification. We will create a
package for this purpose. Assume that we have defined DOCADMIN permission, which allows user to modify
ACLs for documents he doesn�t own, and that NN$UMGR is installed into NNUMGR schema.

Package definition:
CREATE OR REPLACE PACKAGE DOCS$ACL
AS
PROCEDURE addPermsToACL(n_doc_id NUMBER, Perms NNUMGR.NN$TPermList);
PROCEDURE addPermsToACL(n_doc_id NUMBER, Perms NNUMGR.NN$TPermNamesList);
PROCEDURE removePermsFromACL(n_doc_id NUMBER, Perms NNUMGR.NN$TPermList);
PROCEDURE removePermsFromACL(n_doc_id NUMBER, Perms NNUMGR.NN$TPermNamesList);
FUNCTION getDocACL(n_doc_id NUMBER) RETURN NNUMGR.NN$TPermList;
FUNCTION canAccess(n_user_id NUMBER, n_doc_id NUMBER) RETURN Boolean;
END DOCS$ACL;
/
CREATE OR REPLACE PACKAGE BODY DOCS$ACL
AS
PROCEDURE addPermsToACL(n_doc_id NUMBER, Perms NNUMGR.NN$TPermList)
IS
-- perform addition in an autonomous transaction to avoid interference with
-- current transaction.
PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
 IF (Perms IS NULL OR Perms.Count = 0) THEN

N-Networks Extensible User Management Framework User’s Guide and Reference Version 1.0

Copyright 2002-2003 by N-Networks. All rights reserved. 24

 RETURN;
 END IF;
 DECLARE
 l_doc_owner NUMBER(10,0);
 BEGIN
 SELECT OWNER_ID INTO l_doc_owner FROM DOCS
 WHERE DOC_ID = n_doc_id;
 IF l_doc_owner != TO_NUMBER(SYS_CONTEXT(‘NN$UMGR_CTX’, ‘CURRENT_USER’)) THEN
 -- user is not owner of the document
 IF NOT NN$UMGR_ACL.checkPerms(NN$UMGR.myPermissions,
 NNUMGR.NN$TPermNamesList(‘DOCADMIN’)) THEN
 -- user doesn’t have needed permissions
 -- to modify ACLs for other user’s documents
 RETURN;
 END IF;
 END IF;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 -- no such document
 RETURN;
 END;
 -- insert new permissions into the ACL table. FORALL bulk binding INSERT
 -- would be more effective here, but we also want to skip duplicates on
 -- insert – FORALL does not allow this.
 FOR i IN Perms.First..Perms.Last LOOP
 BEGIN
 INSERT INTO DOCS_ACL
 VALUES(n_doc_id, Perms(i));
 EXCEPTION
 -- ignore duplicates, we already have them granted
 WHEN DUP_VAL_ON_INDEX THEN NULL;
 END;
 END LOOP;
 -- commit our inserts
 COMMIT;
END addPermsToACL;

PROCEDURE addPermsToACL(n_doc_id NUMBER, Perms NNUMGR.NN$TPermNamesList)
IS
-- overloaded version which maps names to identifiers and calls original
BEGIN
 addPermsToACL(n_doc_id, NN$UMGR_PERM.mapPermNames(Perms));
END addPermsToACL;

PROCEDURE removePermsFromACL(n_doc_id NUMBER, Perms NNUMGR.NN$TPermList)
IS
-- perform deletion in an autonomous transaction to avoid interference with
-- current transaction.
PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
 IF (Perms IS NULL OR Perms.Count = 0) THEN
 RETURN;
 END IF;
 DECLARE
 l_doc_owner NUMBER(10,0);
 BEGIN
 SELECT OWNER_ID INTO l_doc_owner FROM DOCS
 WHERE DOC_ID = n_doc_id;
 IF l_doc_owner != TO_NUMBER(SYS_CONTEXT(‘NN$UMGR_CTX’, ‘CURRENT_USER’)) THEN

N-Networks Extensible User Management Framework User’s Guide and Reference Version 1.0

Copyright 2002-2003 by N-Networks. All rights reserved. 25

 -- user is not owner of the document
 IF NOT NN$UMGR_ACL.checkPerms(NN$UMGR.myPermissions,
 NNUMGR.NN$TPermNamesList(‘DOCADMIN’)) THEN
 -- user doesn’t have needed permissions
 -- to modify ACLs for other user’s documents
 RETURN;
 END IF;
 END IF;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 -- no such document
 RETURN;
 END;
 -- do a bulk binding DELETE of all specified permissions
 FORALL i IN Perms.First..Perms.Last
 DELETE DOCS_ACL
 WHERE DOC_ID = n_doc_id
 AND PERM_ID = Perms(i);
 COMMIT;
END removePermsFromACL;

PROCEDURE removePermsFromACL(n_doc_id NUMBER, Perms NNUMGR.NN$TPermNamesList)
IS
-- overloaded version which maps names to identifiers and calls original
BEGIN
 removePermsFromACL(n_doc_id, NN$UMGR_PERM.mapPermNames(Perms));
END removePermsFromACL;

FUNCTION getDocACL(n_doc_id NUMBER) RETURN NNUMGR.NN$TPermList
IS
 rv NNUMGR.NN$TPermList := NNUMGR.NN$TPermList();
BEGIN
 SELECT PERM_ID
 BULK COLLECT INTO rv
 FROM DOCS_ACL
 WHERE DOC_ID = n_doc_id;
 -- note that if no document will match n_doc_id, this SELECT statement
 -- will not throw an exception, rather it will not fill the receiving
 -- nested table, so it will effectively be empty, which will be interpreted
 -- as ‘no access’.
 RETURN rv;
END getDocACL;

FUNCTION canAccess(n_user_id NUMBER, n_doc_id NUMBER) RETURN Boolean
IS
 cnt NUMBER;
BEGIN
 IF (n_user_id IS NULL) THEN
 RETURN FALSE;
 END IF;
 -- check if n_user_id is owner of n_doc_id, which means he has access
 SELECT COUNT(1) INTO cnt FROM DOCS
 WHERE DOC_ID = n_doc_id
 AND OWNER_ID = n_user_id;
 IF (cnt = 0) THEN
 -- use checkPerms() to verify access, empty getDocACL result will be
 -- interpreted as ‘no access’
 RETURN NN$UMGR_ACL.checkPerms(
 NN$UMGR_ACL.getPerms(n_user_id), -- n_user_id’s effective perms

N-Networks Extensible User Management Framework User’s Guide and Reference Version 1.0

Copyright 2002-2003 by N-Networks. All rights reserved. 26

 getDocACL(n_doc_id) -- n_doc_id’s ACL
);
 ELSE
 -- n_user_id is owner of n_doc_id, so it’s ok to access it
 RETURN TRUE;
 END IF;

END canAccess;

END DOCS$ACL;
/

Here we have our utility package. It has everything necessary to manage ACLs for documents in DOCS plus
utility functions to verify access rights to them. Now, if we have a user logged in, we can verify if he can
access certain document by calling our verification function this way:
IF DOCS$ACL.canAccess(TO_NUMBER(SYS_CONTEXT(‘NN$UMGR_CTX’,‘CURRENT_USER’)),
some_doc_id) THEN
 -- proceed with document access
ELSE
 RAISE_APPLICATION_ERROR(-20001,
 ‘Access denied: sorry, you do not have privileges to access document #’||
 to_char(some_doc_id));
END IF;

If, for example, a document belongs to user JDOE, and user JDOE required, say, READ permission to access
it by adding this permission to the document�s ACL, the document will be seen only to this user JDOE (even if
he doesn�t have READ himself) and those users having READ permission in their permission list (either
granted directly or inherited through group/role membership).

	Copyright Information And Acknowledgements
	Introduction
	Architecture.
	Software Requirements

	Database Objects Exposed by the Framework.
	Contexts.
	NN$UMGR_CTX Context.

	Types.
	NN$TPermList Type.
	NN$TPermNamesList Type.

	Views and Tables.
	NNVUSERS View and NNTUSERS Table.
	NNVPERMISSIONS View and NNTPERMISSIONS Table.
	NNVGROUPS View.
	NNVUMGR_SESSION View and NNTUMGR_SESSION Table.
	NNVMYPERMISSIONS View.
	NNVUSER_PERMISSIONS View.
	NNVUSER_PERMISSIONS_O View.
	NNVVALIDATIONS View.

	Application Programming Interfaces (APIs).
	NN$UMGR_PERM Package.
	Summary of Subprograms.
	Examples.
	Security Considerations.

	NN$UMGR_ACL Package.
	Summary of Subprograms.
	Examples.
	Security Considerations.

	NN$UMGR Package.
	Variables.
	Constants.
	Exceptions.
	Summary of Subprograms.
	Examples.
	Security Considerations.

	Extending the Framework.
	Adding Attributes To NN$UMGR Entities.
	Maintaining and Checking Your Own Access Control Lists.

